Thermocapillary actuation of liquid flow on chemically patterned surfaces
نویسندگان
چکیده
We have investigated the thermocapillary flow of a Newtonian liquid on hydrophilic microstripes which are lithographically defined on a hydrophobic surface. The speed of the microstreams is studied as a function of the stripe width w, the applied thermal gradient udT/dxu and the liquid volume V deposited on a connecting reservoir pad. Numerical solutions of the flow speed as a function of downstream position show excellent agreement with experiment. The only adjustable parameter is the inlet film height, which is controlled by the ratio of the reservoir pressure to the shear stress applied to the liquid stream. In the limiting cases where this ratio is either much smaller or much larger than unity, the rivulet speed shows a power law dependency on w, udT/dxu and V. In this study we demonstrate that thermocapillary driven flow on chemically patterned surfaces can provide an elegant and tunable method for the transport of ultrasmall liquid volumes in emerging microfluidic technologies. © 2003 American Institute of Physics. @DOI: 10.1063/1.1562628#
منابع مشابه
Planar digital nanoliter dispensing system based on thermocapillary actuation.
We provide guidelines for the design and operation of a planar digital nanodispensing system based on thermocapillary actuation. Thin metallic microheaters embedded within a chemically patterned glass substrate are electronically activated to generate and control 2D surface temperature distributions which either arrest or trigger liquid flow and droplet formation on demand. This flow control is...
متن کاملThermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays
We have designed a microfluidic device for the actuation of liquid droplets or continuous streams on a solid surface by means of integrated microheater arrays. The microheaters provide control of the surface temperature distribution with high spatial resolution. These temperature gradients locally alter the surface tension along droplets and thin films thus propelling the liquid toward the cold...
متن کاملA study of mixing in thermocapillary flows on micropatterned surfaces.
The recent introduction of actuation mechanisms for microfluidic transport based on free surface flows raises a number of interesting questions involving efficient mixing configurations, especially in systems with small aspect ratios. This work investigates the characteristics of convective and diffusive mixing in continuous-mode streaming of thermocapillary microflows on chemically micropatter...
متن کاملInteractive actuation of multiple opto-thermocapillary flow-addressed bubble microrobots
Opto-thermocapillary flow-addressed bubble (OFB) microrobots are a potential tool for the efficient transportation of micro-objects. This microrobot system uses light patterns to generate thermal gradients within a liquid medium, creating thermocapillary forces that actuate the bubble microrobots. An interactive control system that includes scanning mirrors and a touchscreen interface was devel...
متن کاملNanoscale fluid flows in the vicinity of patterned surfaces.
Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanosca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003